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Abstract The nonlocal identification problem related to nonlinear ion transport
model including diffusion and migration is studied. Ion transport is assumed to be
superposition of diffusion and migration under the influence of an electric field. Math-
ematical modeling of the experiment leads to an identification problem for a strongly
nonlinear parabolic equation with nonlocal additional condition. It is shown that the
nonlocal identification problem can be reduced to the initial-boundary value prob-
lem for nonlinear parabolic equation. Iteration method for numerical solution of this
problem is proposed. Numerical results and their interpretation are presented for wide
class of materials, including various values of valences and diffusivities of oxidized
and reduced species.

Keywords Nonlinear ion transport · Diffusion and migration · Reduced parabolic
problem · Total charge · Current response · Iteration scheme

1 Introduction

Transport mechanisms in electrochemical systems are frequently studied by elec-
trochemical transient techniques, using various linear parabolic equations, including
diffusion or diffusion-migration, or diffusion-convection processes. The most used
equation is the Cottrell equation, which was derived for linear initial-boundary value
problems (IBVP) based on Nernst–Planck equation. These problems were examined
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with an open circuited planar electrode, large enough not to be affected by the edge
effects in contact with a semi-infinite layer of electrolyte solution containing uniformly
distributed electroactive species, one-dimensional geometry and purely diffusional
transport [1,2]. Cottrell showed that is the case when a potential applied to the cell the
resulting current response, known as Cottrellian is proportional to 1/

√
t . This result

has been confirmed both theoretically and experimentally under steady-state condi-
tions. However, there are some essential deviations from the Cottrellian behavior due
to the complex electrochemical kinetics as shown in many experimental works [3,4].
In order to overcome such a problem, in recent years many mathematical and com-
putational models related to the electrochemical transport problem have been studied
[5–12]. Mostly using the digital simulation techniques, these studies are based on lin-
ear models for the transport of the electroactive species. Lantelme et al. [5] studied
mathematical analysis of the diffusion process to examine the validity of the classi-
cal treatment when the diffusion coefficient depends on the concentration. Bieniasz
[6] studied the chronoamperometry of a charge neutralization process under condi-
tions of linear migration and diffusion. Churikov et al. [7] studied both theoretically
and experimentally transfer process of lithium intercalation, using pulse methods.
Vorotyntsev et al. [8] analyzed chronoamperometric curves after small amplitude
potential steps for the model linear diffusion of the electroactive species.

On the other hand, Cohn et al. [9] derived a nonlinear initial boundary value problem
with a nonlocal condition to model mass and charge transport in a chronoamperomet-
ric experiment. They considered both diffusion and migration. The latter component
of the total flux leads to an additional nonlinearity in the transport equations. They
proved that the initial boundary value problem has a unique similarity solution. Hasa-
nov [10] and Hasanov et al. [11] studied some numerical methods for the similarity
solution of nonlocal identification problem. Some special cases of the nonlinear initial
boundary value problem with a nonlocal condition have been studied by Hasanov et
al. [13,14].

In this paper, we extend the mathematical method, proposed in [14] to obtain the
numerical solution of the nonlinear ion transport problem, including both diffusion
and migration, without the restrictions, imposed in [14]. In the next section, the mathe-
matical model of the nonlinear nonlocal identification problem related to ion transport
is derived. Reduction method for the identification problem in the case of arbitrary
values of valences and diffusivities of oxidized and reduced species, is proposed in
Sect. 3. The nonlinear finite-difference scheme for the reduced problem, and itera-
tion algorithm are given in Sect. 4. Computational results and comparative analy-
sis with the previous model are given in Sect. 5. The final Sect. 6 contains some
conclusions.

2 The mathematical model including arbitrary valences of oxidized
and reduced species

The nonlinear mathematical model of mass and charge transport in a controlled poten-
tial experiment, for the case of two-species migrating under the influence of the elec-
tric field, have first been derived by Cohn et al. [9]. In this model, ion transport is
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assumed to be superposition of diffusion and migration, and there is only oxidized
species before the potential applied. In perspective of this scaled model, the following
identification problem for the nonlinear parabolic, with the additional nonlocal con-
dition is obtained:

⎧
⎨

⎩

ut = (g(u)ux )x + q ′(t)h(u)x , (x, t) ∈ �∞ := (0,∞) × (0,∞),

u(x, 0) = 0, x > 0,

u(0, t) = 1, t > 0;
(1)

q(t) =
∞∫

0

u(x, t)dx, t ≥ 0. (2)

Here the functions u(x, t) and the coefficient q(t) are defined to be the concentration
of reduced species and the scaled total charge. According to this scaled model, the
concentration functions u(x, t) satisfies the following condition: 0 ≤ u(x, t) ≤ 1.

The pair of functions 〈u(x, t), q(t)〉 will be defined as a solution of the nonlocal
identification problem (1)–(2).

The coefficients g(u) > 0 and h(u) are related to diffusion and migration in the
ion transport, and have the forms [9]:

g(u) := z0 + (zr − z0)u

z0 + (zrκ − z0)u
, h(u) := κu

z0 + (zrκ − z0)u
. (3)

Here and below the dimensionless parameters κ := Dr/zo and zr , z0 denote the
diffusivity ratio, and valences of the reduced and oxidized species, respectively.

Due to mathematical as well as computational difficulties related to solving the
nonlinear and nonlocal identification problem (1)–(2), as a first attempt, Hasanov
et al. [14] studied this mathematical model under the following assumptions:

(A1) u(∞, t) = ux (∞, t) = 0, ∀t > 0;
(A2) zr Dr = zo Do

Assumption (A1) is based on experimental and theoretical results of various authors
(see, [9] and references therein), obtained for the nonlinear model (1)–(2). Specifically,
these results show that for a fixed time t ∈ (0,∞), the concentration function u(x, t)
and its partial derivative ux (x, t) decreases rapidly to zero, as x → ∞, for all t > 0.
Although the assumption (A2) makes some restriction for values of diffusivities Dr

and Do, it permits one to simplify the nonlinearity of the parabolic equation (1). Under
the assumption (A2) the functions g(u) and h(u), defined by (3), have the following
forms:

g(u) := 1 +
(

zr

zo
− 1

)

u, h(u) := 1

zr
u.
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As a result, the second nonlinear term h(u)x in the parabolic equation (1) becomes
linear, h(u)x := ux/zr , and the equation has the form:

ut = ([1 + (zr/zo − 1)u]ux )x + q ′(t)ux/zr , (x, t) ∈ �∞,

We will refer to here this nonlinear model as Model (N0).
In this study we consider the general case, assuming only that u(x, t) → 0, as

x → ∞, which is a quite real assumption from the point of view an experiment. This
model will be defined here as the Model (N1).

To analyze the Model (N1), as well as the differences of these nonlinear models, we
will derive energy identity, corresponding to both models. For this aim, let us multiply
the both sides of the nonlinear parabolic equation (1) by the function u(x, t), and then
integrate on �t := (0,∞) × (0, t). Applying integration by parts, using elementary
transformations and taking into account h(u)x = h′(u)ux , we obtain:

1

2

∞∫

0

u2(x, t)dx +
t∫

0

∞∫

0

g(u)u2
x (x, τ )dxdτ =

t∫

0

[g(u(∞, τ ))ux (∞, τ )u(∞, τ ) − g(u(0, τ ))ux (0, τ )u(0, τ )]dτ

+1

2

t∫

0

q ′(τ )

∞∫

0

h′(u)(u2(x, τ ))x dxdτ, t > 0.

We use here the initial and boundary conditions u(x, 0) = 0, u(0, t) = 1, the bound-
edness condition at infinity u(∞, t) = 0, t > 0 and the condition g(u(0, t)) = g(1) =
1/κ . Then we get:

1

2

∞∫

0

u2(x, t)dx +
t∫

0

∞∫

0

g(u)u2
x (x, τ )dxdτ =

− 1

κ

t∫

0

ux (0, τ )dτ + 1

2

t∫

0

q ′(τ )

∞∫

0

h′(u)(u2(x, τ ))x dxdτ, t > 0, (4)

where

h′(u) := κzo

[zo + (zrκ − zo)u]2 . (5)

The left hand side of (4), which expresses the energy of the system, is defined to be
the energy integral. The energy identity (4) provides further insight into the solution
the nonlinear problem (1)–(2). Moreover, this identity permits one to predict some
distinguished features of the energy integral, corresponding to models (N0) and (N1).
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The first result follows from the positivity of the energy integral. According to the
definition, the flux at x = 0 is defined to be ϕL(0, t): = −(g(u)ux )x=0. With the
definition (3) of the function g(u), we have g(u(0, t)) = g(1) = 1/κ , and hence

ϕL(0, t) := −(g(u)ux )x=0 = −ux (0, t)/κ.

This means that the first integral on the right hand side of the energy identity (4) is the
total flux

�L(0, t) := −
t∫

0

(g(u)ux (x, τ ))x=0dτ, (6)

at the electrode surface x = 0 during the time t > 0. From the positivity of the energy
integral (4) we get the following

Proposition 2.1 The lower bound of total flux at the electrode surface x = 0 during
the time t > 0 is estimated via the integral, generated by the migration term h(u)x ,
as follows:

�L(0, t) > −1

2

t∫

0

q ′(τ )

∞∫

0

h′(u)(u2(x, τ ))x dxdτ, t > 0. (7)

In the case of the Model (N0), the above integral, generated by the migration term
h(u)x , can be simplified due to the condition zr Dr = zo Do (assumption (A2)), which
imply zo = κzr . Substituting this in (5) we get h′(u) = 1/zr . Using this in the energy
identity (4) we get:

1

2

∞∫

0

u2(x, t)dx +
t∫

0

∞∫

0

g(u)u2
x (x, τ )dxdτ =

− 1

κ

t∫

0

ux (0, τ )dτ + 1

2zr

t∫

0

q ′(τ )

∞∫

0

(u2(x, τ ))x dxdτ, t > 0.

Calculating the last right hand side integral, we finally obtain that the energy identity,
corresponding to the Model (N0), is as follows:

1

2

∞∫

0

u2(x, t)dx +
t∫

0

∞∫

0

g(u)u2
x (x, τ )dxdτ = − 1

κ

t∫

0

ux (0, τ )dτ − 1

2zr
q(t), t > 0.

(8)
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Fig. 1 Signs of valences and corresponding current responses

Proposition 2.2 Let condition zr Dr = zo Do hold. Then lower bound of total flux at
the electrode surface x = 0 during the time t > 0 is estimated via the scaled total
charge q(t), as follows:

�L(0, t) >
1

2zr
q(t), t > 0. (9)

Let us explain interpretation of the above results. By definition (see, [1,9]) the time-
dependent current response I(t) is defined via the ion fluxes Jo, Jr and the valences
zo, zr as follows: I(t) = −nF A(zo Jo + zr Jr ), where n is the number of electrons
gained by an ion reduction, F is Faraday’s constant, and A is the surface area of the
electrode. For the negative values (zr < 0) of the valences of the reduced species,
currents corresponding to diffusion (Idiff(t)) and migration (Imigr(t)), are in the same
direction (Fig. 1). This means that cationic species react at cathode and anionic species
react at anode. For positive values (zr > 0) currents of diffusion and migration are
in opposite signs, which means that anions are reduced at cathode. In the first case,
the total current response I(t) at the electrode surface will be sum of the diffusion
and migration components: I(t) = Idiff(t) + Imigr(t). Thus at the electrode surface
both diffusional and migrational fluxes contribute to the total flux. For the other case
(zr , z0 < 0) the total current response at the electrode surface will be difference
between diffusional and migrational components. Thus, at the electrode surface dif-
fusional flux contributes to the total flux. In addition the migrational flux contributes
to the total flux in the bulk solution (far away from the electrode).

3 Reducing the nonlinear identification problem (1)–(2)

We are going to reduce the identification problem (1)–(2), applying the approach pro-
posed in [14]. For this aim, we need to eliminate the additional condition (2), and
reduce the identification problem (1)–(2) to the initial-boundary value problem for
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a strongly nonlinear parabolic equation. Integrating the both sides of the parabolic
equation (1) on �t we obtain:

∞∫

0

u(x, t)dx =
t∫

0

[g(u(∞, τ ))ux (∞, τ ) − g(u(0, τ ))ux (0, τ )]dτ

+
t∫

0

q ′(τ )[h(u(∞, τ )) − h(u(0, τ ))]dτ.

On the left hand side we use Eq. (2). To calculate the terms under the right hand side
integrals we use the conditions:

g(u(∞, t)) = g(0) = 1, g(u(0, t)) = g(1) = 1/κ;
h(u(∞, t)) = h(0) = 0, h(u(0, t)) = h(1) = 1/zr ,

taking into account formulas (3) for the coefficients g(u) and h(u). Then we have:

∞∫

0

u(x, t)dx =
t∫

0

[ux (∞, τ ) − 1

κ
ux (0, τ )]dτ − 1

zr

t∫

0

q ′(τ )dτ.

Since q(0) = 0, due to the initial condition u(x, 0) = 0 the above equation yields:

q(t) =
t∫

0

[ux (∞, τ ) − 1

κ
ux (0, τ )]dτ − 1

zr
q(t).

Solving this equation with respect to q(t) we obtain:

q(t) = zr

1 + zr

⎡

⎣

t∫

0

g(u(∞, τ ))ux (∞, t)dτ −
t∫

0

g(u(0, τ ))ux (0, t)dτ

⎤

⎦ . (10)

The term under the first right hand side integral is equal to −ϕR(∞, t), where
ϕR(∞, t) := −(g(u)ux (x, τ ))x=∞ is the flux at x = ∞, according to the defini-
tion. Then the total flux at x = ∞ during the time t > 0 will be defined as follows:

�R(∞, t) := −
t∫

0

(g(u)ux (x, τ ))x=∞dτ = −
t∫

0

ux (∞, τ ))dτ. (11)
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Therefore taking into account also (6) we may rewrite relationship (10) in the following
form:

q(t) = zr

1 + zr
[�L(0, t) − �R(∞, t)]. (12)

Proposition 3.1 The scaled total charge q(t) is proportional to the difference of the
left (�L(0, t)) and right (�R(0, t)) total fluxes during the time t > 0.

Comparing this result with [14], we conclude that not only the left flux has an
influence to the value of the scaled total charge q(t), but also the right flux needs to
be taken into account.

Differentiating the both sides of (10) yields

q ′(t) = zr

1 + zr

[

ux (∞, t) − 1

κ
ux (0, t)

]

. (13)

Using here the above definitions of the fluxes ϕL(0, t) and ϕR(∞, t), at x = 0 and
x = ∞, respectively, and the relationship

q ′(t) = zr

nF Seu0
I(t)

between the scaled total charge and current response I we obtain the following result.

Proposition 3.2 The current response I(t) is proportional to the difference of the left
ϕL(0, t) and right ϕR(∞, t) fluxes at x = 0 and x = ϕ, respectively:

I(t) = nF Seu0

1 + zr
[ϕL(0, t) − ϕR(∞, t)]. (14)

Finally substituting in the parabolic equation (1) formula (13) for q ′(t), we obtain
the following:

Proposition 3.3 The nonlocal identification problem (1)–(2) is equivalent to the fol-
lowing initial-boundary value problem:

⎧
⎨

⎩

ut = (g(u)ux )x + zr
1+zr

[
ux (∞, t) − 1

κ
ux (0, t)

]
h(u)x , (x, t) ∈ �∞,

u(x, 0) = 0, x > 0,

u(0, t) = 1, t > 0.

(15)

Since h(u)x = h′(u)ux we may introduce for subsequent convenience the functions

Q(t; u) = zr

1 + zr

[

ux (∞, t) − 1

κ
ux (0, t)

]

, H(u) = h′(u), (16)
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and rewrite the transformed problem (15) in the following form

⎧
⎨

⎩

ut = (g(u)ux )x + Q(t; u)H(u)ux , (x, t) ∈ �∞,

u(x, 0) = 0, x > 0,

u(0, t) = 1, t > 0,

(17)

for subsequent convenience of iteration process for the nonlinear parabolic equation.

4 Numerical algorithm and test examples

For linearization of the reduced problem (17) we propose the following iteration algo-
rithm:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(n+1)
t =

(
g(u(n))u(n+1)

x

)

x
+Q(t, u(n))H(u(n))u(n+1)

x , (x, t) ∈ �∞,

u(n+1)(x, 0) = 0, x > 0,

u(n+1)(0, t) = 1, u(n+1)(∞, t) = 0, t > 0.

(18)

Here u(n) = u(n)(x, t) represents the nth iteration for the approximate solution. In the
presented iteration algorithm, the values of the diffusion and migration coefficients
are taken from the previous iteration. The condition

‖u(n+1) − u(n)‖∞ < εstop (19)

is defined to be the stopping criteria for the iteration process (18), where the parameter
εstop > 0 is defined to be the stopping parameter.

For the numerical solution of the linearized (reduced) problem (18), the following
uniform space and time grids are defined:

wh = {xi ∈ [0, L] : xi = ihx ; i = 0, Nx , hx = L/Nx },
wτ = {t j ∈ [0, T ] : t j = jht ; j = 0, Nt , ht = T/Nt },

where the numbers L > 0, T > 0 are chosen to be large enough. We apply following
implicit monotone finite difference scheme (see [15]) for the numerical solution of the
linearized problem (18):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y j+1
i −y j

i
τ

= 1
h

(

g j+1
i+0.5

y j+1
i+1 −y j+1

i
h − g j+1

i−0.5
y j+1

i −y j+1
i−1

h

)

+Q j+1 H j+1
i

(
y j+1

i+1 −y j+1
i−1

2h

)

,

i = 1, Nx − 1, j = 0, Nt − 1,

y j
0 = 1, y j

Nx
= 0, j = 0, Nt ,

y0
i = 0, i = 0, Nx ,

(20)

123



J Math Chem (2010) 47:1248–1262 1257

Table 1 Numerical results for the problem (21) on different grids and optimal values of the grid parameters
h, τ

h(Nx ) τ (Nt ) R := τ/h2 Iter. number εu := ‖u − y‖∞

0.25 (21) 0.25 (21) 4 5 2.5 × 10−2

0.125 (41) 0.125 (41) 8 5 1.2 × 10−2

0.125 (41) 0.0625 (81) 4 5 6.9 × 10−3

0.0625 (81) 0.02 (251) 5.12 6 2.2 × 10−3

0.1 (51) 0.02 (251) 2 5 2.6 × 10−3

0.0313 (161) 0.02 (251) 20.4 6 2.0 × 10−3

where y j
i := u(n)(xi , t j ), g j

i := g(y j
i ), H j

i := H(y j
i ), Q j := Q(y j ). For calculating

of the integral in Eq. (2) Simpson’s numerical integration formula is used.
For linear problems this scheme has the accuracy O(h2 + τ) on the uniform grid

Wht = wh × wτ [15].
To verify an effectiveness of the iteration process, as well as an accuracy of the

finite difference scheme, the following test example is realized. For the given coeffi-
cients g(u) = 1 + u, h(u) = 1 − u and the function Q(t) = 1/

√
t , the exact solution

u(x, t) = t exp(−x2 − t) of the problem

⎧
⎨

⎩

ut = (g(u)ux )x + Q(t)h(u)x + F(x, t), (x, t) ∈ (0, L) × (0, T ),

u(x, 0) = φ(x), x ∈∈ (0, L),

u(0, t) = µ(t), t ∈ (0, T ),

(21)

is defined by appropriately choosing the right side term F(x, t). Here φ(x) =
0, µ(t) = t exp(−t), and L = 5, T = 5. The scheme (20) is applied to the test
problem (21), by using various values of grid parameters h and τ . Results are given
in Table 1. For the value εstop = 10−4 of parameter defined by (19), the number of
iterations is almost independent, and for all variety of grid parameters is about 5÷6, as
table shows. Optimal grid parameters (bold-faced characters in the table) are defined
by the sup-norm error εu := ‖u − y‖∞, between the exact and numerical solutions.

Figure 2 shows behavior of the approximate numerical solution y obtained for 6 iter-
ations, and its traces corresponding to different times ti > 0. The sup-norm error here
is obtained as εu = 2.0 × 10−3 for the optimal grid parameters h = 0.0313, τ = 0.02.
These results show that the accuracy of scheme (20) is high enough. The optimal grid
parameters h = 0.0313, τ = 0.02 are used in subsequent computational experiments.

Experimental and theoretical results show that [9] for a fixed t ∈ (0,∞) the func-
tion u(x, t) and its partial derivative ux (x, t) decreases rapidly and tends to zero, as
x → ∞. The goal of the next computational experiment is to illustrate the behavior of
the the right fluxϕR(t) :≈ −(g(u(x, t))ux (x, t))x=L ≡ 1·ux (L , t) = ux (L , t), t > 0,
and observe the behavior of the flux in increasing values of the parameter L > 0.

For this aim the reduced problem (15) is solved by the iteration scheme (20), for the
following values of the physical parameters: zr = 2, z0 = 3 and κ = 5, which means
κ = Dr/Do �= z0/zr (Model (N1)). For the value T = 10 of the final time parameter,
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Fig. 2 Numerical solution of the nonlinear problem (21) and its sections corresponding to different times
ti > 0, i = 1, 2, 3, 4
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Fig. 3 The right flux ϕR(t) goes to zero when L > 0 increases

the following increasing values of the length parameter is used: L = 3; 5; 10. Figure 3
shows the approximate numerical results for the right flux ϕR(t). For the values L = 3
and L = 5, the only close to the final time T > 0 values of the right flux ϕR(t) are
almost zero. However, for the value L = 10, the right flux ϕR(t) is zero for all values
of t > 0. Hence, errors arising due to the assumption (A1) in the Model (N0) can be
neglected when L ≥ 10. For the values L = 1 ÷ 10, an influence of the right flux
ϕR(t) needs to be taken into account. This, in particular, means that for these values
the Model (N0) is not accurate.
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5 Computational experiments based the Model (N1) and comparative analysis
of the Models (N0) and (N1)

The first series of computational experiments are related to the behavior of the con-
centration function u(x, t) with respect to the time t ∈ [0, 5] and space x ∈ [0, 5]
variables, for different admissible values z0 and zr of the valences of oxidized and
reduced species. For this aim the nonlinear problem (15) is solved by the above itera-
tion algorithm, with the coefficients g(u) and h(u), given by formulas (3), with κ = 5.
For the values (z0, zr ) = (−2,−3); (−3,−4); (2, 1); (3, 2) of valences the numeri-
cal solutions are plotted in Fig. 4. For a fixed time t > 0, the numerical solution y
decreases rapidly and monotonically on the space interval [0, 5] in all cases, the figure
shows. Further, in all these cases concentration function u(x, t) is a smooth one. These
results agree with previous theoretical and experimental results (see, [1,9,16]).

As Fig. 5 shows, when the diffusion coefficient of reduced species is smaller than
the diffusion coefficient of oxidized species (Dr < Do), flux increases with time.
This leads to increasing of the corresponding total charge function q(t) (line ◦ ◦ ◦).
Moreover, in this case q(t) >

√
t . When Dr = Do, the total charge function q(t) is

almost same with the function
√

t (solid line). However, by increasing the values of the
diffusion coefficient of reduced species, the total charge function q(t) decreases. This
means that at the electrode surface, charge is mainly carried out by oxidized species. In
terms of the diffusivity ratio κ := Dr/Do these results can be formulated as follows:
if q[κn] and q[κm] are total charge functions corresponding to the diffusivity ratios κn

and κ , then κn > κm implies q[κn] < q[κm]. Therefore, the mapping κ �→ q(t) is an
antitone one.
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Fig. 4 The numerical solutions of the nonlinear problem (15) for different values of valences of the oxidized
and reduced species
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Fig. 5 Behavior of the scaled total charge function q(t) depending on diffusivity of reduced species

To compare the Models (N0) and (N1), the iteration algorithm (18) is applied to
the reduced problem (15) and to the reduced problem

⎧
⎨

⎩

ut = (g(u)ux )x − 1
(1+zr )κ

ux (0, t)ux , (x, t) ∈ �T ,

u(x, 0) = 0, x ∈ (0, L),

u(0, t) = 1, u(L , t) = 0, t ∈ (0, T ],
(22)

proposed in [14] (Model (N0)). The scaled total charge q(t) is calculated only via the
total flux at x = 0, according the Model (N0) (see, formula (16), in [14]):

q(t) = zr

1 + zr
�L(0, t). (23)

Numerical results corresponding to different values of physical (valences and dif-
fusivities) as well as geometric (length L > 0) parameters, are presented Fig. 6. In
the left figure L = 5 and deviation of the scaled total charge qN0(t; D), obtained by
formula (23) is about 	q = 0.0324, where 	q = maxt∈[0,T ][qN0(t; D)−qN1(t; D)],
and qN1(t; D) is the scaled total charge obtained by formula (12) (Model (N1)). By
decreasing the the value of the length parameter L > 0 this deviation increases. Thus
for L = 3,	q = 0.0799. This is due to the influence of the right total flux �R(0, T ).
Further, when the proportionality condition κ := Dr/Do = z0/zr holds , (Assumption
(A2)) results obtained by Model (N0) and Model (N1) are close, with the difference
of the deviation 	q > 0, as Fig. 5 shows. However, results corresponding to the case
κ := Dr/Do �= z0/zr show (
 
 lines in figures) that the scaled total charge qN1(t; D)

strongly depends on the diffusivity coefficient Dr .
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Fig. 6 The scaled total charge q(t) corresponding to different values of physical and geometric

6 Conclusions

In this paper, the nonlinear mathematical model of the ion transport problem, which
includes diffusion and migration, is analyzed. This model is free from the assump-
tions (A1) and (A2). Some qualitative properties of the concentration function and
fluxes are obtained. Precise physico–chemical meaning of these results are explained.
The method of reducing the identification problem to the initial-boundary problem for
strongly nonlinear parabolic equation is derived. Based on this method a numerical
iteration algorithm for solving the nonlinear identification problem is proposed. The
theoretical results have been validated by computational experiments, using real phys-
ical parameters. The presented computational results are consistent with their physical
meaning and experimental results for real systems.
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